POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Metal science with heat tre	atment	
Course		
Field of study Transport		Year/Semester 1/2
		general academic
Level of study		Course offered in
First-cycle studies		
Form of study		Requirements
full-time		compulsory
Number of hours		
Lecture	Laboratory classes	Other (e.g. online)
30	15	
Tutorials	Projects/seminars	
		Number of credit points
		4

Responsible for the course/lecturer:Responsible for the course/lecturer:prof. dr hab. inż. Leszek Małdziński email:leszek.maldzinski@put.poznan.pl

Prerequisites

Knowledge: Basic knowledge of metallurgy and heat treatment of metals: construction of metals and alloys, carbon and alloy steels, non-ferrous metal alloys, steel corrosion, properties and practical application.

Course objective

Knowledge of the theoretical foundations of metals and their alloys. Understanding the basics of heat treatment and thermochemical properties of steels and metals and their alloys. Knowing the grades of unalloyed and alloy steels, cast steels, cast irons and selected non-ferrous metal alloys: their physical and functional properties and their application in practice.

Course-related learning outcomes

Knowledge

The student has ordered and theoretically founded general knowledge in the field of key issues of technology and detailed knowledge in the field of selected issues in this discipline of transport engineering

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Skills

Student is able, when formulating and solving tasks in the field of transport, to apply appropriately selected methods, including analytical, simulation or experimental methods

The student is able - in accordance with the given specification - to design (create a model of a fragment of reality), formulate a functional specification in the form of use cases, formulate non-functional requirements for selected quality characteristics) and implement a device or a widely understood system in the field of means of transport, using appropriate methods, techniques and tools

Social competences

The student is aware of the importance of knowledge in solving engineering problems, knows examples and understands the causes of malfunctioning transport systems that have led to serious financial and social losses or to serious loss of health and even life

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows: Written and oral exam

Programme content

General characteristics of materials. Importance of materials in product manufacturing processes; manufacturing processes, materials used in manufacturing processes.

Basic groups of engineering materials; metals and their alloys, polymers, ceramics, composites.

The structure of metals

Structure of matter; matter and its components, structure of the atom, classification of chemical elements, bonds between atoms.

The actual structure of metals; classification of crystal structure defects, point defects, dislocations, interaction between dislocations, polycrystalline structure of metals, grain boundaries and boundaries interphase, the effect of defects in the crystal structure on the properties of metals.

Metal alloys and their structure

Iron alloys with carbon

Carbon cast iron.

Heat treatment of metal alloys.

Alloys steel.

Non-ferrous metals and their alloys.

Corrosion of metals and alloys

Teaching methods

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Lecture with multimedia presentation. Laboratory classes.

Bibliography

Basic

1. Michael Ashby i in.: Materials selection in Mechanical design, 2017, ISBN: 978-0-08-100599-6

2. Michael Ashby i in.: Materials Engineering, science. Procrssing and Design. North Amerrican Edition: ISBN-13: 978-1-85617-743-6

- 3. Budinski, K.G. et all: Engineering Materials, Properties and Selection, 2010, ISBN 978-0-13-712842-6
- 4. Callister, W.D.: Material Science and Engineering, ISBN 978-1-118-54689-5
- 5. Mechanical Properties of Matter. New Yourk Congress Number 65-14262
- 6. S. Rudnik: Metaloznawstwo. PWN, Warszawa, 1996
- 7. F. Staub; Metaloznawstwo, 1979
- 8. W. Luty [i in.]: Poradnik inżyniera. Obróbka cieplna stopów żelaza, 1977
- 9. L. Dobrzański: Metaloznawstwo z podstawami nauki o materiałach. WNT, Warszawa, 1996
- 10. S. Prowans: Metaloznawstwo. PWN, Warszawa, 1988
- 11. K. Przybyłowicz: Metaloznawstwo. WNT, Warszawa, 1996
- 12. L. A. Dobrzański: Metaloznawstwo i obróbka cieplna
- 13. L. A. Dobrzański: Podstawy nauki o materiałach i metaloznawstwo, WNT, Gliwice 2002

14. Karol Przybyłowicz, Janusz Przybyłowicz, Materiałoznawstwo w pytaniach i odpowiedziach, Wydawnictwo Naukowo-Techniczne, 2004

Additional

- 1. Michael Ashby i in.: Inżynieria materiałowa tom I i II, Wydawnictwo Galaktyka, 2006
- 2. Michael Ashby i in.: Materiały inżynierskie tom I i II, WNT, 1996
- 3. Poradnik Inżyniera: Obróbka cieplna metali, WNT, 1979
- 4. Mały poradnik mechanika, tom I i II, WNT1999
- 5. Wilhem Domke: Vademecum materiałoznawstwa, NT, 1997

6. Feliks Wojtking, Jurij Soncew: Materiały specjalnego przeznaczenia, Wydawnictwo Politechniki Radomskiej, 2001

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Breakdown of average student's workload

	Hours	ECTS
Total workload	75	3,0
Classes requiring direct contact with the teacher	45	2,0
Student's own work (literature studies, preparation for	30	1,0
laboratory classes/tutorials, preparation for tests/exam, project		
preparation) ¹		

¹ delete or add other activities as appropriate